
 Eurospeech 2001 - Scandinavia

A Proposed Method for Measuring Language Dependency of
Narrow Band Voice Coders

Sander J. van Wijngaarden, Herman J.M. Steeneken

TNO Human Factors
PO Box 23

3769 ZG Soesterberg
The Netherlands

{VanWijngaarden,Steeneken}@tm.tno.nl

Abstract

Narrow band voice coders that use vector quantization
techniques may suffer from language dependency: the
performance of the coder (in terms of speech intelligibility)
may depend on the language spoken. For multinational
applications, this is undesirable. A test method is proposed
that may be used to determine to which extent a vocoder is
language dependent. The proposed method, based on a
subjective speech intelligibility test in multiple languages, is
shown to be feasible by application on known language
dependent ‘systems’: non-native (human) speakers and
listeners. The method is shown to be able to significantly
prove differences in language dependency, even when using
only three languages and nine speaker/listener combinations.

1. Introduction

Speech communication channels are often implicitly assumed
to be language independent. Performance measures, such as
speech quality and speech intelligibility, are usually assessed
without checking the validity of results in languages other
than the test language. For many conventional types of
communication channels it is fair to expect that this
assumption (no language dependency) is valid. Objective
speech intelligibility prediction methods, such as the
Articulation Index [1] and the Speech Transmission Index [2],
have been proven to show a robust relation with subjective
speech intelligibility in a host of languages (eg [3]). This may
also be explained by observing that many global
characteristics of speech are more or less the same across
languages, such as the average long-term speech spectrum [4]
and the intelligibility-degrading influence of noise [5].
However, when investigating the performance of narrow band
voice coders, language dependency may not be ruled out.
Modern narrow band voice coding algorithms (eg [6,7])
generally use vector quantization (VQ) techniques. VQ helps
to achieve lower bit rates without reducing speech quality or
speech intelligibility. In order to construct the necessary
codebooks for VQ, a corpus of suitable speech utterances is
used as ‘training material’. In case this corpus contains
material from too few (or too similar) languages, the
performance of the coder may be language dependent.
When a speech coder is used within a multi-lingual
community (such as, for instance, NATO), language
dependency is quite undesirable. It seems logical that

‘language dependency’ should be included as a standard
criterion when testing the performance of speech coders for
such applications. Unfortunately, measuring language
dependency is not easy – it automatically involves carrying
out speech performance tests in multiple languages. Not only
does this require speech material in multiple languages to be
available; also, experimental subjects who are native
speakers of these different test languages will have to be
recruited. Besides these practical complications, an important
complicating factor is that a single type of multi-lingual
performance test is necessary, which scores performance
equivalently in all tested languages. Any difference in the
implementation between test languages may potentially
threaten the validity of the test.
Finally, there is the problem of quantifying the extent to
which systems are language-dependent. To make easy
interpretation possible, scores on a suitable multi-lingual
performance test should be converted into a single language
dependency metric. To our knowledge, no such metric has yet
been proposed.

2. Available Test Methods

So far, we have used the term ‘language dependency’ a few
times without specifying which performance characteristic of
a coder is presumed to depend on language. Performance of
speech coders is most frequently expressed in terms of speech
quality or speech intelligibility.
Differences in speech quality are usually investigated by
having test subjects rate or compare different speech tokens,
and having them report on their subjective preference.
Although speech quality is a conceptually attractive indicator
of performance, it may not be the best characteristic to use
when determining language dependency. Speech quality
testing paradigms rely on opinions; these are known to have a
reproducible mean within testing populations, but this mean
may vary across groups of subjects who speak different
languages. A more practical complication is that speech
quality tests generally require rather large numbers of
subjects (typically 16-40) in order to produce accurate results.
Such large subject groups may be hard to recruit in multiple
languages.
Speech intelligibility is a more straightforward indicator of
performance: if the intelligibility is lower, a lower percentage
of messages is understood correctly, and the performance is
clearly lower. Speech intelligibility (as opposed to quality) is
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not a matter of opinion. Instead, intelligibility tests measure
the fraction of speech tokens (sentences, words, or syllables)
that are correctly heard. The statistical spread of intelligibility
measures between subjects is usually relatively small. This
makes speech intelligibility a suitable performance
characteristic to use in a language dependency test.
A dozen or more subjective speech intelligibility tests have
been reported in literature (eg. DRT[8], CVC[9], SRT[10]).
Each test is a compromise between diagnostic power (the
ability to identify causes of intelligibility decreases),
precision and efficiency. In this case, diagnostic power is not
as important as precision and efficiency.
Because of practical considerations, another important factor
is the selection of subjects. It may be a non-trivial task to find
enough native speakers of multiple (>3) languages, especially
if the time needed for each subject is considerable. This rules
out lengthy tests, or procedures that require extensive
training.
Taking all factors into consideration, a suitable subjective test
to base a language dependency test on matches the following
profile:

• Highly reproducible intelligibility test
• Equivalent implementation in multiple languages
• Suitable for use with small subject groups (<10 subjects)
• Requires only little time of each subject
• Little or no subject training necessary

3. The SRT Method

Based on the requirements mentioned above, a good
candidate intelligibility test method is the Speech Reception
Threshold (SRT) method [5,10,11]. This test gives a robust
measure of sentence intelligibility in noise, corresponding to
the speech-to-noise ratio that gives 50% correct response of
short redundant sentences (8 or 9 syllables long).
In the SRT testing procedure, all test sentences are first
processed through the tested coders, and stored on a
(notebook) computer hard disk. Before each presentation,
masking noise is added to the (processed) sentence in order to
obtain the required speech-to-noise ratio. The masking noise
spectrum is equal to the long-term spectrum of the test
sentences. After presentation of each sentence, a subject
responds by repeating the sentence as he or she heard it, and
the experimenter compares the response with the actual
sentence. If the response is completely correct, the noise level
for the next sentence is increased by 2 dB; after an incorrect
response, the noise level is decreased by 2 dB. The first
sentence is repeated until it is responded correctly, using 4
dB steps. This is done to quickly converge to the 50%
intelligibility threshold. By taking the average speech-to-
noise ratio over the last 10 sentences, the 50% sentence
intelligibility threshold (SRT) is obtained.
SRT-results are always reported as an SNR (Speech-to-Noise
Ratio) at which the sentence intelligibility is 50%. A high
SRT value means that only little noise may be added to
reduce the intelligibility to 50%. A low score means that the
speech signal can tolerate a fairly large amount of noise and
still give 50% sentence intelligibility. Undegraded speech can
tolerate more noise before reaching the 50% intelligibility
threshold than speech degraded by coding artifacts; the

difference in SNR is a measure of the difference in
intelligiblity. Similarly, the performance of vocoders in
different languages can be compared in terms of speech
intelligibility using SRT results.
SRT scores offer high reproducibility when working with only
small subject groups, while the time needed for each subject
is limited (typically less than 45 minutes). Moreover, the
sentences are constructed following a simple set of rules [10].
The original SRT test by Plomp and Mimpen was based on
the Dutch language, but the test has proven to be easily
implemented in several languages [5], yielding equivalent
results in different languages.

4. The Proposed LD Metric

When test scores for different coders in different languages
are available, a quick comparison should give some insight
into the language dependency of the coders. Clearly, if no
differences are found between languages, then apparently
none of the coders is language dependent. When some
statistical differences are observed, the interpretation
becomes more difficult.
When inspecting SRT results collected in several languages,
the following variables (or sources of variance) in the overall
experiment may be identified:

• Language
• Coder
• Speaker
• Listener

If we were comparing coders simply in terms of intelligibility,
then we might simply average over everything in the list
above except ‘coders’, and compare these means. In this case,
we are interested in a quantification of the extent to which
coders depend on language.
We propose a language dependency-metric that is calculated
from the mean SRT results for n coders in m languages as
follows. First, for each coder-language combination the mean
SRT value is calculated (across speakers and listeners). We
will call this mean Mi,j where i is the index for coder and j for
language. Our LD-metric Li will then be defined as:
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We used Ci,j,k to indicate the critical interval for statistical
significance of the difference |Mi,j – Mi,k|. Hence, if all
differences between each pair of tested languages is just
statistically significant for coder i, then Li will be equal to 1.
Now we are left with the problem of calculating Ci,j,k. Critical
intervals may be obtained by carrying out an appropriate
statistical analysis. First of all, we need to know if we can
prove an overall interaction between ‘coder’ and ‘language’
from our SRT data: we wish to find out if the relation
between intelligibility and ‘coder’ is modified by ‘language’.
This is easily done using off-the-shelf statistics software
packages, such as Statistica [13], using (for instance) a
straightforward 1-way ANOVA [12].
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If there is a significant interaction, we may try to calculate the
critical intervals Ci,j,k. Several statistical methods are
available, mostly based on the studentized range statistic. For
our purposes, we prefer Duncan’s Multiple Range test
[12,13], but several similar tests (such as the perhaps better
known Newman-Keuls test) are also suitable. Assuming a
certain alpha-level (in our case always p<0.05), critical
ranges may be calculated. In the context of Duncan’s test,
these critical ranges indicate which difference between two
marginal means is just significant. In this case, the marginal
means are the mean SRT values across speakers and
listeners, which are identical to the means Mi,j. This means
that the Ci,j,k values needed for calculating our LD-metric are
identical to the critical ranges determined using Duncan’s
test. We can now calculate Li for each coder from equation 1.
The metric Li has some attractive features, particularly due to
the use of critical ranges. Because of this normalization, a
value of “1” has an intuitive interpretation; the difference in
performance between two languages is (on average) just
significant if Li = 1.
Another attractive feature of Li is the statistical interpretation
of differences. The 95% confidence range of each of the terms
in equation 1 is, because of the normalization term Ci,j,k ,
equal to 1. By using the basic error propagation rules (or by
examining the sampling distribution of Li) the critical interval
for differences between values of Li is is easily derived: this
only depends on the number of statistically independent
observations m according to

miL
1=δ (2)

This also means that any Li differing more from zero than this
value, indicates that the coder may be assumed language
dependent with 95% confidence.
The practical procedure for calculating Li will be
demonstrated in the next section.

5. Feasibility of the Proposed Method

In order to prove that our proposed method does in principle
measure language dependency, we carried out SRT tests in
Dutch, English and German. The Dutch sentences were
translated (although far from literally) to English and
German, observing the same rules that were used for
constructing the original Dutch sentences (everyday 8 or 9
syllable sentences, with a maximum of 1 three-syllable word
per sentence).
First of all, a baseline-test was run in order to make sure that
the test behaves equivalently in all three languages. The
results are given in table 1.

Table 1. Mean SRT and standard deviation
(baseline), measured using N subjects

Dutch German English
Mean SRT (dB) -0.7 -1.1 -1.0
SD 1.6 1.7 1.1
N 9 3 3

None of the results in table 1 differ significantly. The critical
interval for statistical significance in table 1 is approx. 1 dB.

Although one will generally aim for a larger number of
subjects per language (perhaps 6 to 10), these results give
confidence that for the given languages the SRT test is
equivalent. Baseline results as given in table 1 may also be
used to compensate for small differences between languages
by means of a normalization factor.
Now the question arises which (language-dependent) systems
may be tested in order to prove that the proposed method
does indeed quantify language dependency. The problem here
is a lack of existing (quantitative) knowledge on language
dependency of coders. We need test conditions that are surely
language dependent, as well as conditions that are guaranteed
to be language independent.
Instead of testing coders (or other systems), a class of test
conditions was used for which known language effects exist
[5]: non-native speakers and listeners. Instead of testing the
performance of a channel, the performance of the
participating speakers/listeners is tested. Although the
interpretation of results will be different, the principles of the
test remain the same.
SRT tests were run in Dutch, English and German, in three
conditions: fully native, (non-native) Dutch speakers and
(non-native) Dutch listeners. We will refer to these conditions
as ‘C1’, C2’ and ‘C3’, respectively, noting that language
dependency is expected for C2 and C3, but not for C1. We
will refer to C2 and C3 as non-native conditions, although
one of the languages (Dutch) is the native language of the
subjects. In all conditions, speech material by three speakers
was used and 3 listeners participated.
Only non-native speakers and listeners were selected with
good proficiency in the tested languages, both written and
orally. Although SRT effects of non-nativeness up to 12 dB
have been reported for less proficient speakers [14], such
unrealistically low intelligibility scores (when compared to
coder performance) did not occur here. All measured SRT
values are given in table 2.
The results in table 2 were ’normalized’ by subtracting the
mean baseline SRT score for each language (table 1) from the
actual SRT score. Hence, instead of being true SRT scores,
the values in table 1 express the effect of ‘non-nativeness’ in
terms of SRT score. In this case, this normalization is not
really necessary, but if larger differences between SRT
implementations for the tested languages are found, this may
lead to a better language dependency estimate.

Table 2. Full SRT results of the language dependency
experiment (9 speaker/listener combinations per condition
per language). All SRT results are given in dB.

C1 C2 C3
NL EN GE NL EN GE NL EN GE
0.1 3.3 -0.4 1.3 -0.3 0.4 2.9 7.7 1.2

-3.5 -1.5 -0.4 -1.1 0.9 0.4 0.9 6.1 3.6
-1.9 0.9 0.0 1.3 0.5 0.8 -1.1 4.9 0.8
0.9 -1.5 0.4 0.5 0.1 1.2 2.5 8.9 4.0
0.5 -1.5 2.4 -1.1 -1.9 -0.4 1.3 9.7 4.0
2.5 0.5 -0.4 -1.5 -0.7 1.2 -0.3 8.5 4.0
0.5 -0.7 0.8 0.9 0.5 2.4 0.9 5.3 2.4

-1.9 -0.7 -0.8 -0.3 1.7 2.4 -1.5 5.3 1.2
1.3 0.9 -1.2 -3.1 2.1 3.2 -1.1 2.9 2.8

Since there are three languages (m=3 in equation 1), the
number of differences |Mi,j – Mi,k| to be calculated per ‘coder’
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is only 3. The values for |Mi,j – Mi,k|, and the associated
critical ranges according to Duncan’s test, are given in table
3.

Table 3. Differences |Mi,j – Mi,k| and critical ranges Ci,j,k.
|Mi,1 – Mi,2| |Mi,1 – Mi,3| |Mi,2 – Mi,3|

C1 0.17 0.17 0.00
C2 1.59 0.70 0.89
C3 2.12 6.12 4.00

Ci,1,2 Ci,1,3 Ci,2,3

C1 1.53 1.53 1.58
C2 1.65 1.58 1.67
C3 1.68 1.7 1.71

Equation 1 is used to calculate Li for C1, C2 and C3. Results
are given in table 4.

Table 4. LD-metric Li for conditions C1, C2 and C3
C1 C2 C3

Li 0.07 0.65 2.40

The critical interval for significant difference between the
results in table 3 is, according to equation 2, δLi = 0.58.
Hence, both ‘coders’ C2 and C3 are significantly language
dependent, but C1 (fully native) is not. Furthermore, all
differences in language dependency between C1, C2 and C3
are significant.

6. Conclusions and Discussion

The validation of any language dependency test must consist
of two parts: first of all, the method must be shown to identify
language dependency on systems of which there is an a priori
knowledge of language dependency. Secondly, the suitability
of the test for practical purposes must be proven by applying
it on a variety of voice coding algorithms. In this paper, the
first half of this validation process was presented; for lack of
knowledge on language dependency of vocoders, the method
was tested on ‘language dependent humans’. The ‘language
dependency’ of groups of (proficient) non-native speakers and
listeners could be proven statistically using the proposed LD-
metric. Encouraged by this result, the second part of the
validation process, application on vocoders, will now be
initiated. Preliminary experiences with application of the
SRT method on vocoder-degraded speech give reason to look
forward to results of these experiments with confidence.
The limited version of the test used in this paper (only 3
languages, 9 speaker/listener combinations per language)
needs a mean SRT difference between languages of approx. 1
dB to obtain a significant result. By using more (or less
similar) languages, the test may be made more sensitive to
smaller language dependency effects. The same applies for
the number of subjects.
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